

基于粒子群优化压缩感知的可见光定位算法

徐世武^{1,2,3,4},吴怡^{1,2,3*},王徐芳^{1,2,3}

¹福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室,福建福州 350007; ²福建师范大学协和学院,福建福州 350117;

³福建师范大学光电与信息工程学院福建省光子技术重点实验室,福建 福州 350007;

4福建师范大学光电与信息工程学院福建省光电传感应用工程技术研究中心,福建福州 350007

摘要 目前,基于压缩感知的可见光定位采用线性最小二乘法重构信号,容易陷入局部最优解,且需要高密度的发 光二极管布局。针对这些问题,提出了一种基于粒子群优化压缩感知的可见光定位算法。首先,建立一种基于重 构接收信号强度残差的适应度函数;其次,将指纹定位的权重求解问题转换为稀疏矩阵的重构问题;最后,采用粒 子群优化重构信号。仿真结果表明,所提算法的时间复杂度较低、鲁棒性好,即使在低密度的发光二极管布局下, 定位误差依然很小。当信噪比为 10 dB、网格间距为 50 cm 时,所提算法定位误差的平均值为 3.67 cm,显著低于现 有的 10 种同类算法。还详细分析了不同参数对所提算法定位误差的影响,所得结果可为实际可见光定位系统的 设计提供有益的参考。

关键词 光通信;可见光通信;可见光定位;位置指纹;粒子群优化;压缩感知 中图分类号 TN929.12 **文献标志码** A **doi**:

doi: 10.3788/CJL202148.0306004

1 引 言

作为室外定位系统的补充,室内定位系统逐渐成 为目前研究的热点之一。与到达时间(TOA)和到达 角度(AOA)两种定位方法相比,由于读取接收信号 强度(RSS)值简单、硬件成本低且收发之间无需保持 时钟同步,基于 RSS 的定位方法备受研究人员的关 注^[1]。近几年随着可见光通信(VLC)的发展,基于 VLC 的室内定位逐渐成为研究热点^[2]。与射频通信 技术相比,基于发光二极管(LED)通信的室内定位具 有 3 个优点^[3]:定位精度高,可以实现厘米级别的定 位精度;频谱资源丰富,属于可见光频谱,无电磁波辐 射,可直接在加油站、手术室等电磁波辐射禁止区域 使用:多径干扰小,主要存在视距(LOS)通信。

室内可见光定位主要可以分为基于测距与无需 测距两种定位方法^[2-3],基于测距的定位方法采用朗 伯光源模型得到收发之间的距离,进而实现定 位^[4-5]。无需测距的定位方法一般采用指纹匹配的 方法实现定位^[6-7]。基于测距的定位方法虽然简单, 但需要获得朗伯光源模型的相关参数,实现起来较 难。基于位置指纹的定位方法在离线阶段会不可避 免地需要采集位置指纹信息,但是定位时无需依赖 朗伯光源模型,可以有效地解决获取朗伯光源模型 参数难的问题,且定位精度高[7]。机器学习是常用 的指纹定位方法,如 K 最近邻(KNN)^[8]、极限学习 机(ELM)^[9]、随机森林(RF)^[10]及人工神经网络 (ANN)等^[11]。文献「12] 采用加权 K 最近邻 (WKNN)算法实现可见光定位,由于 K 个最近邻 指纹采用不同的权重,取得较好的定位精度。基于 机器学习的指纹定位通常将定位区域划分成不同类 别的网格,通过训练与学习得到目标所属的类别,但 为了提高定位精度,需要大量的样本学习,增加了实 际应用的难度。WKNN 虽然采用加权的方式实现 定位,相比KNN,定位误差得到显著降低,然而权重

收稿日期: 2020-07-30;修回日期: 2020-09-06;录用日期: 2020-09-15

基金项目:国家自然科学基金(61871131,61701118,61901117,61571128)、国家自然科学基金促进海峡联合基金(U1805262)、福建省科技计划(2019J01267)、福建省高校产学合作项目(2018H6007)、福建省海洋经济发展补助资金(ZHHY-2020-3)、福建省光电传感应用工程技术研究中心开放课题(2018003)

* E-mail: wuyi@fjnu.edu.cn

研究论文

的计算方法采用 RSS 向量之间距离的倒数^[12],该 权重值计算方法依然不够准确。由于位置指纹满足 压缩感知(CS)的稀疏性,因此 CS 为可见光定位提 供了一种新的研究方案。经典的 CS 算法包括正交 匹配追踪(OMP)^[13]、再加权 l_1 范数最小化 (RW l_1 M)^[14]及基追踪(BP)^[15]等。CS 虽然在基于 射频通信的指纹定位中被广泛使用^[16-17],然而在 VLC 中的研究依然较少,文献[13]利用 OMP 重构 算法实现可见光定位。

目前,基于 CS 的指纹定位存在 2 个问题:采用 线性最小二乘法重构信号,容易陷入局部最优解,从 而导致定位误差大;为了提高 CS 重构信号的准确 性,需要较大的观测值,即需要高密度的 LED 布局, 如基于 OMP^[13]与 RW*l*₁M^[14]的可见光定位。为了 解决这些问题,本文结合粒子群优化(PSO)较强的 全局搜索能力及较低的时间复杂度^[18-20],提出一种 基于粒子群优化压缩感知的重构算法(PSO-CS 算 法),并将指纹定位的权重求解问题转换为稀疏矩阵 的重构问题,旨在提供一种在低密度 LED 布局下实 现高精度的定位方法。

2 基本理论

2.1 压缩感知

CS 表明,当向量 $X \in \mathbb{R}^N$ 是稀疏度为S 的信号时,可以利用测量矩阵 $\Phi \in \mathbb{R}^{M \times N}$ 和低维的观测向量 $Y \in \mathbb{R}^M$,通过 CS 方法重构出高维的未知向量 $X \in \mathbb{R}^N$,CS 的基本表达式^[16]为

$$Y = \Phi X, \qquad (1)$$

式中:M 为 LED 的个数,N 为指纹点的个数。当 $M \ll N$ 时,(1)式是一个欠定方程组。但当向量 X满足稀疏性的情况下,在一定条件下,(1)式可以转 换为^[16]

min $\| X \|_1$, subject to $Y = \Phi X + \varepsilon$, (2) 式中: $\| X \|_1$ 为向量 X 的 l_1 范数; ε 为测量噪声。 可以利用线性最小二乘法求解出向量 $X_l \in \mathbb{R}^s$, 即

$$\boldsymbol{X}_{I} = (\boldsymbol{\Phi}_{I}^{\mathrm{T}} \boldsymbol{\Phi}_{I})^{-1} \boldsymbol{\Phi}_{I}^{\mathrm{T}} \boldsymbol{Y}, \qquad (3)$$

式中:索引集 $I \in \mathbb{R}^{s}$; $\boldsymbol{\Phi}_{I} \in \mathbb{R}^{M \times s}$ 表示依次提取测量矩阵 $\boldsymbol{\Phi}$ 对应索引集 I 的 S 列,并重新构成矩阵。

2.2 粒子群优化

在经典的粒子群算法中,通过在解空间域内随 机产生 Q 个粒子,每个粒子都有各自的位置与飞行 速度,通过不断的迭代,粒子群快速收敛于最优解, 其中第 *j* 个粒子的速度与位置更新^[18]分别为 第 48 卷 第 3 期/2021 年 2 月/中国激光

$$v_{j,k}(t+1) = \omega v_{j,k}(t) + c_1 r_1 [p_{j,k}(t) - x_{j,k}(t)] +$$
(4)

$$c_2 r_2 \lfloor g_k(t) \rangle = x_{j,k}(t) \rfloor, \quad (\uparrow)$$

$$_{k}(t+1) = x_{j,k}(t) + v_{j,k}(t+1)$$
(5)

式中:t 为当前的迭代次数;k 为搜索空间的维度,维 度大小取决于稀疏度 S 的大小; $r_1 = r_2$ 为[0,1]之 间均匀产生的随机值; ω 为惯性权重,其大小决定粒 子的全局搜索能力; $c_1 = c_2$ 分别为粒子的自我学习 能力与社会学习能力; $x_{j,k}(t) = v_{j,k}(t)$ 分别为 第j 个粒子在第t 次迭代后的位置与速度; $p_{j,k}(t)$ 和 $g_k(t)$ 分别为第t 次迭代后的个体最优解和全局 最优解。

3 PSO-CS 定位算法设计

3.1 指纹定位模型

 x_i

基于 LED 通信的 PSO-CS 定位模型如图 1 所 示,假设在天花板上均匀分布着 $M \land LED$ 。将定 位区域均匀地划分为正方形网格结构,每个网格 点称为指纹点,用 θ_n 表示第 $n \land H$ 纹点的坐标, $n=1,2,\dots,N$ 。网格间距,即最小正方形边长用 L表示。从图 1 可以看出,随机出现的目标会以 极大的概率落入由 4 个指纹点构成的最小正方形 网格内,因此指纹定位的问题,即寻找与目标最近 邻的 4 个指纹点,并求解目标与 4 个指纹点之间的 权重值,并将权重求解问题转换为稀疏矩阵的重 构问题。

3.2 测量矩阵

离线阶段,由 N 个指纹点构成的 RSS 测量矩 阵 $\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$ 为

$$\boldsymbol{\Phi} = \begin{bmatrix} \boldsymbol{\varphi}_1 \boldsymbol{\varphi}_2 \cdots \boldsymbol{\varphi}_N \end{bmatrix} = \begin{bmatrix} \varphi_{1,1} & \varphi_{1,2} & \cdots & \varphi_{1,N} \\ \varphi_{2,1} & \varphi_{2,2} & \cdots & \varphi_{2,N} \\ \vdots & \vdots & & \vdots \\ \varphi_{M,1} & \varphi_{M,2} & \cdots & \varphi_{M,N} \end{bmatrix},$$
(6)

式中:第 n 个指纹点的 RSS 测量向量 $\boldsymbol{\varphi}_n = [\varphi_{1,n}, \varphi_{2,n}, \dots, \varphi_{M,n}]^T, \varphi_{m,n}$ 为在第 n 个指纹点处由 光电二极管(PD)读取到来自第 m 个 LED 的 RSS 值。

3.3 观测向量

在线阶段,第*l*个目标的 RSS 观测向量 $Y_l \in \mathbb{R}^{M \times 1}$ 为

$$\boldsymbol{Y}_{l} = [\boldsymbol{\varphi}_{1,l}, \boldsymbol{\varphi}_{2,l}, \cdots, \boldsymbol{\varphi}_{M,l}]^{\mathrm{T}}, \qquad (7)$$

式中: $\varphi_{m,l}$ 为第l个目标读取到来自第m个 LED 的 RSS 值; $l=1,2,\dots,C,C$ 为目标的总数。

3.4 适应度函数

由于压缩感知重构的目的是寻找一个稀疏度为 S的解向量 X_1 ,使重构误差最小。而基于压缩感知 的指纹定位实质是找到S个最近邻指纹点,并重构 出S个指纹点的权重值,因此建立适应度函数,表 达式为

$$F = (\boldsymbol{Y}_{l} - \boldsymbol{\Psi}\boldsymbol{X}_{I})^{\mathrm{T}} (\boldsymbol{Y}_{l} - \boldsymbol{\Psi}\boldsymbol{X}_{I}), \qquad (8)$$

式中: $I = \max(\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{Y}_{l}, S)$,表示得到 $\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{Y}_{l}$ 前S个能 量最大的值,能量按照从高到低依次得到对应的索 引集 $I \in \mathbb{R}^{s}$; $\boldsymbol{X}_{l} \in \mathbb{R}^{s}$ 表示按照索引集 $I \in \mathbb{R}^{s}$ 得 到对应指纹的权重值向量; $\boldsymbol{\Psi} = \boldsymbol{\Phi}_{l}$,表示依次提取 测量矩阵 $\boldsymbol{\Phi}$ 对应索引集I的S列,并重新构成矩阵 $\boldsymbol{\Psi} \in \mathbb{R}^{M \times S}$ 。因此定位的本质是找到一个解向量 $X_{I} = [g_{1}, g_{2}, \dots, g_{S}]^{T}$,使目标函数 F 取得最小值,即

$$\boldsymbol{X}_{I} = \arg \min_{I \in \mathbb{R}^{S}} (F),$$

subject to $0 < g_{k} < 1$ and $\sum_{k=1}^{S} g_{k} = 1$, (9)

式中:g_k 为粒子群迭代收敛时第 k 维输出的全局最优解。

3.5 算法描述

针对传统压缩感知,采用(3)式重构信号时容易 陷入局部最优解,且需要高密度的 LED 布局,因此 提出一种 PSO-CS 算法,其流程图如图 2 所示。为 了使 $\boldsymbol{\Phi}^{\mathsf{T}}\boldsymbol{Y}_{l}$ 的能量值为(0,1],需要先对 $\boldsymbol{\Phi} = \boldsymbol{Y}_{l}$ 进 行 l_{2} 范数归一化处理,即,使测量向量 $\boldsymbol{\varphi}_{n}$ 与观测向 量 \boldsymbol{Y}_{l} 分别满足 $\|\boldsymbol{\varphi}_{n}\|_{2} = 1$ 与 $\|\boldsymbol{Y}_{l}\|_{2} = 1$ 。初始化 参数包括索引集 I、稀疏度 S、种群规模 Q、惯性权重 ω 、学习因子 c_{1} 与 c_{2} 、种群的初始位置与速度。 T_{\max} 表示最大的迭代次数, F_{\min} 表示适应度函数的阈值。

图 2 中,通过步骤 1)可以得到 S 个与目标最近 邻指纹的索引集 I。通过步骤 2)粒子群优化,重构 出索引集 I 对应的 S 个指纹点权重值,虽然剩余的 N-S 个指纹点权重值为 0,通过压缩感知重构后 信息丢失,但因为剩余的N-S个指纹点不参与定

Fig. 2 Flowchart of the PSO-CS algorithm

位,因此对定位结果无影响。PSO-CS 算法通过 T_{max} 与 F_{min} 来判断粒子群停止迭代的条件。

最后,根据步骤 3)输出的索引集 I 和 $X_I = [g_1,g_2,\dots,g_s]^T$,计算第 l 个目标的坐标 (x_l,y_l) ,即

$$(x_{I}, y_{I}) = \frac{\sum_{k=1}^{S} \boldsymbol{X}_{I}(k) \boldsymbol{\theta}_{I}(k)}{\sum_{k=1}^{S} \boldsymbol{X}_{I}(k)}, \qquad (10)$$

3.6 算法的时间复杂度

PSO-CS 算法的时间复杂度如表 1 所示,步骤 1)中求解索引集 I 的时间复杂度为O(MN)+O(SN),重新构建矩阵 Ψ 的时间复杂度取决于粒子群规模 Q 与需要的迭代次数 t,最坏情况需要迭代 T_{max} 次。步骤 3)为输出变量值,时间复杂度忽略不计。根据最近邻指纹的强稀疏性和低密度的 LED 布局,即 $S \ll N = M \ll N$, PSO-CS 算法的时间复杂度主要取决于 N,Q 及 T_{max} ,近似为 $O(MN)+O(SN)+O(QT_{max})$ 。根据(9)式可知,粒子群需要搜索的维度为 S,每个维度的取值范围为(0,1),粒子群需要搜索的维度和每个维度的取值范围范围都很小,所以总体时间复杂度较低。

表 1 PSO-CS 算法的时间复杂度

Table 1	Time complexity of the PSO-CS algorithm
Step	Theoretical complexity
1)	O(MN) + O(SN) + O(MS)
2)	$O(QT_{max})$

 $O(MN) + O(SN) + O(QT_{max})$

4 仿真分析

Total

为了验证所提 PSO-CS 算法的有效性,对其与 如下 10 种算法进行比对分析。包括 5 种常用的机 器学习,分别为 KNN^[8]、ELM^[9]、RF^[10]、ANN^[11]、 WKNN^[12];3 种常用的压缩感知,分别为 OMP^[13]、 RWl₁M^[14]、BP^[15];2 种被广泛使用的基于测量收发 之间距离的定位方法,分别为牛顿迭代(NR)^[5,21]、 线性最小二乘法(LLS)^[4,22]。其中 ELM、ANN、RF 三种机器学习分类的基本原理^[7]:首先,将定位区域 划分为若干个相等的网格点,其中每个网格点代表 一个类别;其次,利用机器学习算法对每个网格点所 属的类别进行训练;最后,与推导的模型进行比较, 预测目标的位置。

4.1 测量模型

由于 LED 是可见光光源,服从朗伯光源模型,

在仿真过程中,位置指纹的测量矩阵 $\boldsymbol{\sigma}$ 与目标的观测向量 Y_i 由朗伯光源模型产生。典型的室内可见 光通信主要存在 LOS 通信,为了不失一般性,同样 采用被广泛使用的 LOS 朗伯光源模型,如文献 [4-7,12-14,19,23-28]均采用 LOS 朗伯光源模型。 则接收到的光功率值为

$$P_{\rm r} = P_{\rm tr} \frac{A_{\rm PD}(\lambda+1)}{2\pi d^2} \cos^{\lambda}(\beta) T_{\rm s} g \cos \alpha \,, \quad (11)$$

式中: P_{tr} 为 LED 的发射功率;d为 LED 与 PD 之 间的距离; λ 为 LED 的调制阶数; A_{PD} 为 PD 的有效 面积; β 和 α 分别为 LED 的辐射角和 PD 的接收角; T_s 和 g分别为接收端的光滤波器增益和聚光透镜 增益。为了不失一般性,同样假设 cos $\beta = \cos \alpha = h/d^{[12,14,20,22-24,26]}$,h表示 LED 与 PD 之间的垂直 距离。

4.2 参数设置

设置朗伯光源模型的参数为 $P_{tr} = 5 \text{ W}, T_s =$ g=1,PD 的接收视角 $\alpha_{FOV} = \pi/2$, $A_{PD} = 1$ cm², $\lambda =$ 1。为了公平比对,目标总数 C 为 200,且随机均匀 地出现在面积为4m×4m、距离地面高度为1m的 区域中。KNN 与 WKNN 算法的 K 值为 4, RSS 向 量之间的距离度量方法采用欧氏距离。PSO-CS、 OMP、RWl₁M、BP 算法的稀疏度 S 为 4。PSO 的 参数为 $\omega = 1, c_1 = c_2 = 2, T_{\text{max}} = 100, F_{\text{min}} = 10^{-9},$ Q=50,粒子群的初始位置与速度在(0,1)之间随机 产生一个值。M=4,即4个 LED 均匀地被布置在 面积为4m×4m、距离地面高度为3m的天花板 上,L为50 cm。ANN与ELM算法的输入层、隐层 及输出层的神经元数目分别为4、100及81,激活函 数为 Sigmoid。在 RF 算法中,树的数目为 30,其中 隐层神经元数目与树的数目均为离线阶段进行训练 与学习得到的最优值,即分类精度达到最高时对应 的取值,且分类方法采用文献[7]中的方法。

4.3 结果分析

4.3.1 信噪比 R_{SN} 的影响

为了验证所提算法的有效性,分析了不同算法 在不同信噪比 R_{SN}下的平均定位误差,其结果如 图 3 所示。从图 3 可以看出:OMP、RWl₁M、BP、 PSO-CS 4 种压缩感知算法的平均定位误差受到噪 声的影响较小,然而由于 LED 密度低、观测值不够、 采用线性最小二乘法重构的信号容易陷入局部最优 解,OMP、RWl₁M、BP 3 种算法的平均定位误差较 大;ELM、ANN、RF 3 种机器学习分类算法的平均 定位误差受噪声的影响较大,在低信噪比下,分类的

Fig. 3 Impact of R_{SN} on average positioning error

准确度明显下降,平均定位误差明显变大。在样本 数量不足的情况下,机器学习分类算法的平均定位 误差相对较大,适合粗定位,虽然可以通过提高样本 的数量、降低网格的间距来提高机器学习分类算法 的准确度,但复杂度会变高,加大了实际应用的难 度。KNN 算法取 K 个最近邻指纹点坐标的平均值 作为定位结果,相比 ELM、ANN、RF 算法,平均定 位误差较低;WKNN 算法采用不同的权重,相比 KNN 算法,平均定位误差得到进一步的降低,然而 即使在高信噪比下,WKNN 算法的平均定位误差也 无法得到进一步降低,主要由于 WKNN 算法采用 RSS 向量之间距离的倒数作为权重,不够准确;与 基于位置指纹的定位不同,NR 与 LLS 是通过测量 收发之间的距离来实现定位的,算法复杂度虽然低, 然而在低信噪比下,平均定位误差较大。虽然在高 信噪比下,这两种算法的平均定位误差小,前提是需 要准确获得朗伯光源模型的相关参数,实际应用时 难度较大,且 NR 与 LLS 容易陷入局部最优解,从 而会产生较大的定位误差。最后,从图 3 可以看出, PSO-CS 算法的平均定位误差显著低于 KNN、 ELM、RF、ANN、WKNN、OMP、RWI1M 及 BP 8 种基于位置指纹的定位方法,即使网格间距为 50 cm,在低信噪比下,依然显著优于 NR 与 LLS 2 种基于测距的定位算法。

4.3.2 定位误差的累积分布函数(CDF)

11 种不同算法的定位误差累积分布如图 4 所 示,从图 4 可以看出, PSO-CS 算法的定位误差累积 分布明显优于另外 10 种算法。OMP、RWI, M、BP 3种压缩感知算法因在低密度 LED 布局下观测值 不够,且采用线性最小二乘法重构信号,容易陷入局 部最优解,所以这3种算法的定位误差累积分布比 较不理想。在网格间距较大、指纹采样数量较小的 情况下,ELM、ANN、RF 3 种机器学习分类算法的 定位误差累积分布也同样不理想。WKNN 算法的 定位误差累积分布相对较好,然而因其权重的计算 方法不够准确,相比 PSO-CS 算法,定位误差累积 分布依然较差。从图 4(b)可以看出,虽然在高信噪 比下,NR与LLS2种算法的定位误差累积分布相 对较好,然而与另外9种基于位置指纹的方法不同, NR 与 LLS 是基于测量收发之间距离的定位算法, 需要事先获得准确的朗伯光源模型相关参数,实现 起来相对较难。

图 4 定位误差的累积分布。(a)信噪比为 10 dB;(b)信噪比为 20 dB

Fig. 4 Cumulative distributions of the positioning errors. (a) Signal-to-noise ratio is 10 dB; (b) signal-to-noise ratio is 20 dB

4.3.3 网格间距 L 对 PSO-CS 定位算法的影响 PSO-CS 定位算法的平均定位误差随网格间距 的变化情况如图 5 所示。从图 5 可以看出,随着 L 的降低,在 5 种不同的信噪比下,PSO-CS 算法的平 均定位误差都逐渐降低。然而随着指纹采样间距的 降低,指纹库规模变大,这会加大离线阶段指纹库的 构建难度及算法的时间复杂度,因此在实际的系统 设计中,可以考虑在定位误差与算法复杂度之间进 行折中处理。从图 5 也可以看出,即使网格间距达 到 80 cm,在 5 dB的低信噪比下,PSO-CS 算法的平

图 5 L 对 PSO-CS 定位算法的影响

Fig. 5 Impact of *L* on the PSO-CS positioning algorithm 均定位误差为 9.24 cm,完全符合实际的大部分定 位应用场景。

4.3.4 粒子群规模Q对PSO-CS定位算法的影响

PSO-CS 定位算法的平均定位误差随粒子群规 模的变化如图 6 所示。从图 6 可以看出,随着粒子 群规模的增加,在 6 种不同情况下,PSO-CS 算法的 平均定位误差逐渐降低。粒子群算法的收敛速度 快,复杂度相对较低,但当粒子群规模较小时,容易 陷入局部最优解,当局部最优解偏离全局最优解时, 重构得到的权重值偏离真实值,从而产生较大的定 位误差。当粒子群规模为 50 时,6 种不同情况下的 平均定位误差都趋于收敛,因粒子群需要搜索的维 度为 4,每个维度的取值范围为(0,1),粒子群需要 搜索的维度和每个维度的取值范围都很小,因此对 粒子群规模的要求相对不高,时间复杂度相对较低。

PSO-CS 定位算法的平均定位误差随稀疏度的 变化情况如图 7 所示。从图 7 可以看出,在 6 种不 同情况下,PSO-CS 算法的平均定位误差都先降低 后增加。当 S 为 4 时出现波谷,即取 4 个最近邻值 时,平均定位误差最小,所得结果与大部分文献一

图 7 S对 PSO-CS 定位算法的影响

Fig. 7 Impact of S on the PSO-CS positioning algorithm

致,也验证了随机出现的目标会以极大的概率出现 在由四个指纹点构成的最小正方形网格内。因此 PSO-CS算法的最佳稀疏度为4,如果继续增加S 值,不但平均定位误差变大,而且增加了粒子群搜索 的维度与算法的时间复杂度。

4.3.6 LED 个数 M 对 PSO-CS 定位算法的影响

PSO-CS 定位算法的平均定位误差随 LED 个数的变化情况如图 8 所示。从图 8 可以看出,在 6 种不同情况下,随着 M 值变大,PSO-CS 算法的平均定位误差都逐渐降低,但是当 M 取为 4 时,6 种不同情况下的平均定位误差都趋于收敛,因此 PSO-CS 算法的指纹定位无需高密度的 LED 布局就可以实现较低的定位误差。

图 8 M 对 PSO-CS 定位算法的影响

4.3.7 指纹采样率 R_{SR} 对 PSO-CS 定位算法的影响 为了验证 PSO-CS 算法具有较好的鲁棒性,即 在非均匀的网格结构下依然具有较好的定位性能, 引入指纹采样率 R_{SR},研究其对平均定位误差的影 响。在给定的指纹采样率下,采用随机选取指纹的 方法,采样率越低,指纹分布密度越低且越不均匀。 为了更加准确地得到结果,在相同的采样率下,采用

研究论文

图 9 所示。从图 9 可以看出,在采样率只有 50%、 指纹分布密度低且极不均匀的情况下,所提算法的 平均定位误差依然较小。为了进一步分析算法的鲁 棒性,选取其中的两种情况分析 PSO-CS 定位算法 在采样率只有 50%的情况下,重复执行 50 次的定 位结果。从图 10 可以看出,即使网格间距达到 50 cm,在指纹采样率只有 50%的情况下,重复执行 50 次的平均定位误差曲线波动依然较小,当信噪比 为 10 dB 时,方差为 2.54 cm,当信噪比为 20 dB 时, 方差为 1.38 cm,两种情况的方差都很小。因此, PSO-CS 定位算法具有较好的鲁棒性,可以应用于 不同指纹分布的定位场景中。

图 9 R_{SR}对 PSO-CS 定位算法的影响

Fig. 9 Impact of R_{SR} on the PSO-CS positioning algorithm

Fig. 10 Variation curve of the average positioning error of the PSO-CS positioning algorithm with the number of times, $R_{\rm SR} = 50 \%$

4.3.8 算法的时间复杂度分析

当L = 50 cm, $R_{\text{SN}} = 10 \text{ dB}$ 时,重复定位 200次 的平均计算时间如表 2 所示。从表 2 可以看出:相 比于 ELM、RF、ANN 3 种分类算法,PSO-CS 算法 的时间复杂度明显比较低;相比 OMP、RW l_1 M、BP 3 种压缩感知重构算法,PSO-CS 算法的平均计算

第 48 卷 第 3 期/2021 年 2 月/中国激光

时间虽然相对较高,但依然可以满足实时的定位要 求,目平均定位误差得到明显降低:KNN、WKNN、 NR、LLS4种算法的平均计算时间相对较低,但相 比 PSO-CS 算法,4 种算法的平均定位误差明显较 大。从表 2 可以看出,相比于 KNN、ELM、RF、 ANN、WKNN、OMP、RWl, M、BP、NR、LLS 算法, PSO-CS 算法的平均定位误差分别降低了 75.88%, 89.15%, 85.44%, 90.25%, 58.05%, 80.82%、86.29%、80.01%、73.57%、76.56%。由 于WKNN 算法的定位结果相对较好,因此分析 WKNN 算法与 PSO-CS 算法取得相近定位精度时 的平均计算时间,当 R_{SN} =10 dB时,其结果如表 3 所示。从表 3 可以看出,即使 L 值达 70 cm, PSO-CS 算法的平均定位误差为 5.89 cm。因为 WKNN 算法采用 RSS 向量之间距离的倒数作为权重,权重 的计算方法为粗略估计方法,即使 L 值降低到 10 cm,平均定位误差依然达到 6.18 cm,虽然此时 的平均定位误差接近 PSO-CS 算法,但所需要的指 纹数是 PSO-CS 算法的 34.3 倍,在实际定位过程 中,会极大增加离线指纹库的构造复杂度,且在线指 纹匹配的时间也增加了,此时的平均计算时间是 PSO-CS 算法的 2.5 倍。

表 2 L 值相同时的平均计算时间

Fable 2	Average	computing	time	when	L	value	is	same
---------	---------	-----------	------	------	---	-------	----	------

Almonithm	Average positioning	Average computing		
Algorithm	error /cm	time /ms		
PSO-CS	3.67	56.12		
KNN	15.22	8.42		
ELM	33.84	218.23		
RF	25.22	253.26		
ANN	37.66	3231.18		
WKNN	8.75	9.23		
OMP	19.14	23.86		
RWl_1M	26.78	48.53		
BP	18.36	36.79		
NR	13.89	8.61		
LLS	15.66	1.36		

表 3 L 值不同时的平均计算时间

ble 3	Ave	erage	computin	g time	when	L	value	15 d	ifferer	1
gorithm	n L	/cm	Average	positio	oning	Av	erage	con	putin	g

Algorithm	L. /cm					
ngommi	B / cm	error /cm	time /ms			
PSO-CS	70	5.89	45.32			
WKNN	10	6.18	113.68			

Ta

5 结 论

目前,基于压缩感知的可见光定位需要高密度 的 LED 布局,采用线性最小二乘法重构信号时容易 陷入局部最优解。为了解决这些问题,结合粒子群 优化较强的全局搜索能力,提出一种基于粒子群优 化压缩感知的可见光定位算法。由于求解权重的搜 索维度与取值范围都很小,所提算法的时间复杂度 较低,可以满足定位的实时要求。仿真结果表明,当 网格间距为 50 cm, 信噪比为 10 dB 时, 相比于 $KNN^{[8]}$, $ELM^{[9]}$, $RF^{[10]}$, $ANN^{[11]}$, $WKNN^{[12]}$, $OMP^{[13]}$, $RWl_1M^{[14]}$, $BP^{[15]}$, $NR^{[5,21]}$, $LLS^{[4,22]}$ 法, PSO-CS 算法的平均定位误差分别降低了 75.88%, 89. 15%, 85. 44%, 90. 25%, 58. 05%, 80.82%、86.29%、80.01%、73.57%、76.56%。还 详细分析了网格间距、粒子群规模、稀疏度、LED 个 数、指纹采样率对 PSO-CS 算法定位误差的影响, 所得结果可为实际可见光定位系统的设计提供有益 的参考。

参考文献

- Zafari F, Gkelias A, Leung K K. A survey of indoor localization systems and technologies [J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2568-2599.
- [2] Luo J H, Fan L Y, Li H S. Indoor positioning systems based on visible light communication: state of the art [J]. IEEE Communications Surveys &. Tutorials, 2017, 19(4): 2871-2893.
- [3] Zhuang Y, Hua L C, Qi L N, et al. A survey of positioning systems using visible LED lights [J].
 IEEE Communications Surveys & Tutorials, 2018, 20(3): 1963-1988.
- [4] Ye Z W, Ye H Y, Nie X Y, et al. High-accuracy visible light positioning method based on received signal strength indicator [J]. Chinese Journal of Lasers, 2018, 45(3): 0306002.
 叶子蔚,叶会英,聂翔宇,等.基于接收信号强度检测的高精度可见光定位方法[J].中国激光, 2018, 45(3): 0306002.
- [5] Mathias L C, de Melo L F, Abrao T. 3-D localization with multiple LEDs lamps in OFDM-VLC system
 [J]. IEEE Access, 2019, 7: 6249-6261.
- [6] Zhao C H, Zhang H M, Song J. Fingerprint based visible light indoor localization method [J]. Chinese Journal of Lasers, 2018, 45(8): 0806002.
 赵楚韩,张洪明,宋健.基于指纹的室内可见光定位 方法[J].中国激光, 2018, 45(8): 0806002.

- [7] Guo X S, Shao S H, Ansari N, et al. Indoor localization using visible light via fusion of multiple classifiers [EB/OL]. (2017-12-20) [2020-06-29]. https://arxiv.org/abs/1703.02184.
- [8] Xie Y Q, Wang Y, Nallanathan A, et al. An improved K-nearest-neighbor indoor localization method based on spearman distance[J]. IEEE Signal Processing Letters, 2016, 23(3): 351-355.
- [9] Huang G B, Zhou H M, Ding X J, et al. Extreme learning machine for regression and multiclass classification [J]. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics: a Publication of the IEEE Systems, Man, and Cybernetics Society, 2012, 42(2): 513-529.
- [10] Breiman L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.
- [11] Zhang S, Du P F, Chen C, et al. Robust 3D indoor VLP system based on ANN using hybrid RSS/PDOA
 [J]. IEEE Access, 2019, 7: 47769-47780.
- [12] Alam F, Chew M T, Wenge T, et al. An accurate visible light positioning system using regenerated fingerprint database based on calibrated propagation model[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(8): 2714-2723.
- Gligoric K, Ajmani M, Vukobratovic D, et al. Visible light communications based indoor positioning via compressed sensing [EB/OL]. (2018-05-02) [2020-06-29]. https://arxiv.org/abs/1805.01001.
- [14] Zhang R, Zhong W D, Qian K M, et al. A reversed visible light multitarget localization system via sparse matrix reconstruction [J]. IEEE Internet of Things Journal, 2018, 5(5): 4223-4230.
- [15] Liu X J, Xia S T, Fu F W. Reconstruction guarantee analysis of basis pursuit for binary measurement matrices in compressed sensing[J]. IEEE Transactions on Information Theory, 2017, 63(5): 2922-2932.
- [16] Feng C, Au W S A, Valaee S, et al. Received-signalstrength-based indoor positioning using compressive sensing[J]. IEEE Transactions on Mobile Computing, 2012, 11(12): 1983-1993.
- [17] Li Z, Luo L G, Liu Y D, et al. UHF partial discharge localization algorithm based on compressed sensing [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(1): 21-29.
- [18] Qin Q D, Cheng S, Zhang Q Y, et al. Particle swarm optimization with interswarm interactive learning strategy[J]. IEEE Transactions on Cybernetics, 2016, 46(10): 2238-2251.
- [19] Zhou B P, Lau V, Chen Q C, et al. Simultaneous positioning and orientating for visible light

研究论文

communications: algorithm design and performance analysis[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 11790-11804.

- [20] Cai Y, Guan W P, Wu Y X, et al. Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization [J]. IEEE Photonics Journal, 2017, 9 (6): 7908120.
- [21] Sahin A, Eroglu Y S, Guvenc I, et al. Hybrid3-D localization for visible light communication systems
 [J]. Journal of Lightwave Technology, 2015, 33 (22): 4589-4599.
- [22] Gu W J, Aminikashani M, Kavehrad M. Impact of multipath reflections on the performance of indoor visible light positioning systems[EB/OL]. (2015-05-28)[2020-06-29]. https://arxiv.org/abs/1505.07534.
- [23] Wang P F, Guan W P, Wen S S, et al. High precision indoor visible three-dimensional positioning system based on immune algorithm[J]. Acta Optica Sinica, 2018, 38(10): 1006007.
 王鹏飞,关伟鹏,文尚胜,等.基于免疫算法的高精 度室内可见光三维定位系统[J].光学学报, 2018, 38(10): 1006007.
- [24] Xu S W, Wu Y, Su G D. Fingerprint matching and localization algorithm based on orthogonal frequency division multiplexing modulation for visible light communication [J]. Laser & Optoelectronics Progress, 2019, 56(9): 090601.

徐世武,吴怡,苏国栋.基于正交频分复用调制的可

第48卷第3期/2021年2月/中国激光

见光通信指纹匹配定位算法[J].激光与光电子学进展,2019,56(9):090601.

- [25] Wang Y, Zhao H D. VLC/PDR particle filter fusion indoor positioning based on smartphone[J]. Chinese Journal of Lasers, 2020, 47(7): 0706001.
 王杨,赵红东.基于智能手机的 VLC/IPDR 粒子滤 波融合室内定位[J].中国激光, 2020, 47(7): 0706001.
- [26] Xu S W, Wu Y, Wang X F. Visible light positioning algorithm based on sparsity adaptive and location fingerprinting [J]. Acta Optica Sinica, 2020, 40 (18): 1806003.
 徐世武, 吴怡, 王徐芳. 基于稀疏度自适应和位置指 纹的可见光定位算法[J]. 光学学报, 2020, 40(18): 1806003.
- [27] Cao Y P, Li X J, Hu Y Y. Visible light fingerprintbased high-accuracy indoor positioning method [J]. Laser & Optoelectronics Progress, 2019, 56(16): 160601.
 曹燕平,李晓记,胡云云.基于可见光指纹的室内高 精度定位方法[J].激光与光电子学进展, 2019, 56 (16): 160601.
- [28] Chen D Q, Wu X P, Hua Y T. Indoor visible light fingerprint localization scheme with range-assistance
 [J]. Laser & Optoelectronics Progress, 2019, 56
 (6): 060603.
 陈道钱,吴晓平,华宇婷.一种测距辅助的室内可见 光指纹定位方法[J].激光与光电子学进展, 2019, 56
 (6): 060603.

Visible Light Positioning Algorithm Based on Particle Swarm Optimization Compressed Sensing

Xu Shiwu^{1,2,3,4}, Wu Yi^{1,2,3*}, Wang Xufang^{1,2,3}

¹ Key Laboratory of Opto-Electronic Science and Technology for Medicine, Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China;

 $^{\rm 2}$ Concord University College , Fujian Normal University , Fuzhou , Fujian 350117 , China ;

³ Fujian Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering,

Fujian Normal University, Fuzhou, Fujian 350007, China;

⁴ Fujian Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China

Abstract

Objective Over the past few years, the large-scale popularization of smart terminal devices has introduced a wide range of services, including indoor positioning. Indoor positioning systems that are based on visible light communication have four advantages over indoor positioning systems that are based on radio-frequency communication technology: 1) Centimeter-level positioning accuracy can be achieved; 2) They have high bandwidth and support high-speed data transmission; 3) There is no electromagnetic wave radiation, so they can be used directly in gas stations, operating rooms, and other places where electromagnetic radiation is prohibited; 4) They use mainly line-of-sight communication. Because of these advantages, indoor positioning based on visible light

communication has gradually become a research hotspot. Currently, fingerprint positioning based on compressed sensing has two problems: 1) Using the linear least squares method to reconstruct the signal can easily fall into the local optimal solution, resulting in large positioning errors; 2) Large observation values are required to improve the accuracy of reconstructed signals, that is, a high-density light emitting diode (LED) layout is required. To solve the two abovementioned problems, a visible light positioning algorithm based on particle swarm optimization compressed sensing (PSO-CS) is proposed that aims to provide a high-precision positioning method under low-density LED layout.

Methods The research methods for visible light positioning propose in this paper are mainly based on compressed sensing and particle swarm optimization. First, based on the reconstructed and measured received signal strength (RSS) values, a fitness function based on the matched RSS residual is established. Second, based on the sparsity of the location fingerprints, the problem of solving the weight of fingerprint positioning is transformed into the problem of reconstructing the sparse matrix. Third, based on the inner product of the measurement matrix and the observation vector, the energy of the inner product is arranged from high to low to obtain the four fingerprint points with the highest energy value. Finally, combined with particle swarm optimization, the weight vector of four fingerprint points close to the target is reconstructed and the coordinates of the target are calculated.

Results and Discussion The simulation results show that the average positioning error of the PSO-CS algorithm is significantly lower than that of K-nearest neighbor (KNN), extreme learning machine (ELM), random forests (RF), artificial neural network (ANN), weighted K-nearest neighbor (WKNN), orthogonal matching pursuit (OMP), reweighted l_1 -norm minimization (RW l_1 M), and basis pursuit (BP) algorithms. In the low signal-to-noise ratio (SNR) range (5 dB-20 dB), even if the grid spacing is 50 cm, the average positioning error of the PSO-CS algorithm is still better than that of the Newton-Raphson (NR) and linear least square (LLS) positioning algorithms (Fig. 3). When the SNR is between 10 dB and 20 dB, the cumulative distribution of positioning errors made by the PSO-CS algorithm is significantly better than that of the other 10 algorithms (Fig. 4). Even in the low-density LED layout, the average positioning error based on the PSO-CS algorithm is still low (Fig. 8). The PSO-CS algorithm has good robustness. Even if the grid spacing is 50 cm and the fingerprint sampling rate is only 50%, the average positioning error curve fluctuation is still small, even after execution is repeated 50 times. When the SNR is 10 dB, the variance is 2.54 cm, and when the SNR is 20 dB, the variance is 1.38 cm. The variance in both cases is very small (Fig. 9 and Fig. 10). When the grid spacing is 50 cm and the SNR is 10 dB, compared with KNN, ELM, RF, ANN, WKNN, OMP, RWl_1M , BP, NR, and LLS algorithms, the average positioning errors of PSO-CS algorithm are reduced by 75.88%, 89.15%, 85.44%, 90.25%, 58.05%, 80.82%, 86.29%, 80.01%, 73.57%, and 76.56%, respectively (Table 2). When its positioning accuracy is similar to that of the PSO-CS algorithm, the WKNN algorithm requires 34.3 times more fingerprints than the PSO-CS algorithm, and WKNN's average calculation time is 2.5 times higher than PSO-CS's (Table 3).

Conclusion In this paper, a novel particle swarm optimization compressed sensing algorithm is proposed and successfully applied to visible light positioning based on location fingerprints. Because only four neighbor fingerprints are required to participate in positioning, the dimension value of the swarm search is 4. The weight value of the fingerprint points is between 0 and 1; that is, the search space of the swarm is between 0 and 1. The dimensions and space are very small, so the time complexity of the proposed algorithm is low. This allows it to meet real-time positioning requirements. The simulation results show that even in the low signal-to-noise ratio and low-density LED layout, the average positioning error of the proposed algorithm is still low, and it remains significantly lower than that of similar algorithms. This paper also analyzes the influence of grid spacing, swarm size, sparsity, number of LEDs, and fingerprint sampling rate on positioning errors in the PSO-CS algorithm. The results obtained can provide a useful reference for the design of a practical visible light positioning system.

Key words optical communications; visible light communication; visible light positioning; location fingerprint; particle swarm optimization; compressed sensing

OCIS codes 060.2605; 230.3670; 220.4830